149 research outputs found

    The Effect of Hints and Model Answers in a Student-Controlled Problem-Solving Program for Secondary Physics Education

    Get PDF
    Many students experience difficulties in solving applied physics problems. Most programs that want students to improve problem-solving skills are concerned with the development of content knowledge. Physhint is an example of a student-controlled computer program that supports students in developing their strategic knowledge in combination with support at the level of content knowledge. The program allows students to ask for hints related to the episodes involved in solving a problem. The main question to be answered in this article is whether the program succeeds in improving strategic knowledge by allowing for more effective practice time for the student (practice effect) and/or by focusing on the systematic use of the available help (systematic hint-use effect). Analysis of qualitative data from an experimental study conducted previously show that both the expected effectiveness of practice and the systematic use of episode-related hints account for the enhanced problem-solving skills of students

    The hidden cost of disturbance: Eurasian Oystercatchers (Haematopus ostralegus) avoid a disturbed roost site during the tourist season

    Get PDF
    Disturbance may impact individual birds and ultimately bird populations. If animals avoid disturbed sites this may prevent them from being disturbed directly but may also negatively impact their movement patterns and energy budgets. Avoidance is, however, challenging to study, because it requires following individuals over large spatial scales in order to compare their movement rates between sites in relation to spatiotemporal variation in disturbance intensity. We studied how 48 GPS-tracked non-breeding Eurasian Oystercatchers Haematopus ostralegus used two neighbouring roost sites in the Wadden Sea. One roost site is highly influenced by seasonal recreational disturbance whereas the other is an undisturbed sandbar. We analysed roost choice and the probability of moving away from the disturbed roost site with regard to a seasonal recreation activity index, weekends and night-time. Oystercatchers often chose to roost on the undisturbed site, even if they were foraging closer to the disturbed roost. The probability that Oystercatchers chose to roost on the disturbed site was negatively correlated with the recreation activity index and was lowest in the tourist season (summer and early autumn), indicating that birds used the site less often when recreation levels were high. Furthermore, the probability that birds moved away from the disturbed site during high tide was positively correlated with the recreation activity index. The choice to roost on the undisturbed site implies that birds must fly an additional 8 km during one high-tide period, which equates to 3.4% of daily energy expenditure of an average Oystercatcher. Our study tentatively suggests that the costs of avoidance may outweigh the energetic cost of direct flight responses and hence that avoidance of disturbed sites requires more attention in future disturbance impact studies. Nature managers should evaluate whether high-quality undisturbed roosting sites are available near foraging sites, and in our case closing of a section of the disturbed site during high tides in the tourist season may mitigate much disturbance impact

    Spatiotemporal variation in disturbance impacts derived from simultaneous tracking of aircraft and shorebirds

    Get PDF
    Assessing the impacts of disturbance over large areas and long time periods is crucial for nature management, but also challenging since impacts depend on both wildlife responses to disturbance and on the spatiotemporal distribution of disturbance sources. Combined tracking of animals and disturbance sources enables quantification of wildlife responses as a function of the distance to a disturbance source. We provide a framework to derive such distance–response curves and combine those with disturbance source presence data to quantify energetic costs of disturbance at a landscape scale. We tracked 90 Eurasian Oystercatchers Haematopus ostralegus and all aircraft in a military training area in the Dutch Wadden Sea. We quantified distance–response curves estimating flight probability and additional displacement for five types of aircraft activities, by comparing bird movement prior to aircraft presence with movement during aircraft presence. We then used the distance–response curves to map mean and variation in additional daily energy expenditure due to cumulative aircraft disturbance across the landscape for a 700-day period. Flight probability and displacement responses differed strongly among aircraft activities and decreased from transport aeroplanes, through bombing jets, helicopters, jets to small civil aeroplanes. Since the most disturbing aircraft activities were also the rarest ones, mean additional daily energy expenditure did not exceed 0.25%. However, days with substantial (>1%) additional expenditure occurred between 0.1% and 3.7% of all days across high-tide roosts in the tidal basin. Notably, expenditure particularly spiked on days with transport aeroplane activity (up to 8.5%). Synthesis and applications. We quantified cumulative energetic flight costs due to aircraft disturbance and found that these were low and unlikely to impact survival of oystercatchers in our study area. Our results provide evidence that the legal minimum flight height of 450 m for small civil aeroplanes effectively limits the disturbance of oystercatchers. Mitigation should focus on limiting the number of days when disturbance has a high impact by reducing rare but highly disturbing activities, especially transport aeroplanes. Our approach can be applied to other species and disturbance sources that are automatically tracked, for example boats and walkers, ultimately to quantify the entire anthropogenic disturbance landscape

    Warming temperatures drive at least half of the magnitude of long-term trait changes in European birds

    Get PDF
    Many wild populations are experiencing temporal changes in life-history and other phenotypic traits, and these changes are frequently assumed to be driven by climate change rather than nonclimatic drivers. However, this assumption relies on three conditions: that local climate is changing, traits are sensitive to climate variability, and other drivers are not also changing over time. Although many studies acknowledge one or more of these conditions, all three are rarely checked simultaneously. Consequently, the relative contribution of climate change to trait change, and the variation in this contribution across traits and species, remain unclear. We used long-term datasets on 60 bird species in Europe to test the three conditions in laying date, offspring number, and body condition and used a method that quantifies the contribution of warming temperatures to changes in traits relative to other effects. Across species, approximately half of the magnitude of changes in traits could be attributed to rising mean temperature, suggesting that increasing temperatures are likely the single most important contributor to temporal trends and emphasizes the impact that global warming is having on natural populations. There were also substantial nontemperature-related temporal trends (presumably due to other changes such as urbanization), which generally caused trait change in the same direction as warming. Attributing temporal trends solely to warming thus overestimates the impact of warming. Furthermore, contributions from nontemperature drivers explained most of the interspecific variation in trait changes, raising concerns about comparative studies that attribute differences in temporal trends to species differences in climate-change sensitivity

    Disturbance increases high tide travel distance of a roosting shorebird but only marginally affects daily energy expenditure

    Get PDF
    Background: Anthropogenic disturbance can negatively affect an animal's energy budget by evoking movement responses. Existing research focuses mainly on immediate displacement as a disturbance effect, since this can be easily observed in the field. However, effects on movement over longer timescales are poorly examined and it is largely unknown if and to what extent they reflect immediate responses. Longer-term responses could for example be larger than immediate responses if birds, after disturbance, return to the original location and thereby travel twice the immediate disturbed distance. Methods: We combined GPS tracking data with observational data to quantify the effects of anthropogenic (air force and walkers) and non-anthropogenic disturbances on distances travelled by roosting Eurasian Oystercatchers (Haematopus ostralegus) during the non-breeding season. We compared immediate displacement after a disturbance with distance travelled during the entire high tide period (longer-term response), while accounting for environmental factors. Additionally, we calculated energy expenditure due to disturbance based on observed disturbance frequencies. Results: Disturbance resulted in an immediate displacement response of ~ 200 m (median). Air force disturbances tended to yield larger immediate responses than walker and, especially, than non-anthropogenic disturbances. Longer-term responses and immediate responses were approximately similar, suggesting that, over longer timescales, spatial disturbance effects in the study area remain confined to immediate effects. However, disturbances were infrequent (0.17 disturbances per bird per hour) and most disturbances were of natural origin (62%). Consequently, anthropogenic disturbance of roosting oystercatchers in the study area on average costs 0.08% of the daily energy expenditure. Conclusions: Our results suggest that immediate spatial responses to disturbance can be a useful proxy for spatial responses over longer timescales. Over the non-exhaustive range of conditions investigated, energetic consequences of spatial disturbance responses for an oystercatcher in the study area are marginal due to low disturbance levels

    Connecting foraging and roosting areas reveals how food stocks explain shorebird numbers

    Get PDF
    Shorebird populations, especially those feeding on shellfish, have strongly declined in recent decades and identifying the drivers of these declines is important for conservation. Changing food stocks are thought to be a key driver of these declines and may also explain why trends have not been uniform across Europe's largest estuary. We therefore investigated how winter population trends of Eurasian oystercatchers (Haematopus ostralegus) were linked to food availability in the Dutch Wadden Sea. Our analysis incorporated two spatial scales, a smaller scale focused on roost counting areas and food available to birds in these areas and a larger spatial scale of tidal basins. A novelty in our study is that we quantify the connectivity between roosting and foraging areas, identified from GPS tracking data. This allowed us to estimate food available to roosting birds and thus how food availability may explain local population trends. At the smaller spatial scale of roost counting areas, there was no clear relationship between available food and the number of roosting oystercatchers, indicating that other factors may drive population fluctuations at finer spatial scales. At the scale of tidal basins, however, there was a significant relationship between population trends and available food, especially cockle Cerastoderma edule,. Mortality and recruitment alone could not account for the large fluctuations in bird counts, suggesting that the site choice of wintering migratory oystercatchers may primarily drive these large fluctuations. Furthermore, the relationship between oystercatcher abundance and benthic food stocks, suggests winter shorebird counts could act as ecological indicators of ecosystem health, informing about the winter status of food stocks at a spatial scale of tidal basins
    corecore